465 research outputs found

    Intrinsic, multiplexable sensors for electric field strength using structural slow light in phase-shifted fibre Bragg gratings

    Get PDF
    In this paper we demonstrate through simulation the potential for phase-shifted fibre Bragg gratings incorporating structural slow light to enable intrinsic reflection-mode point sensors for electric field or voltage. It is shown that lo-bi FBGs incorporating multiple phase shifts yield large enhancements in group index (group delay) at resonance, thus amplifying and localizing time-dependent non-reciprocal effects. A relative, multiplexable measurement of electric field by comparison of the phase unbalance between linear modes on and off resonance is proposed, yielding static resolutions of 24 V and 18 mV respectively in unpoled (dc Kerr effect) and poled (Pockels effect) fibres

    High-speed, solid state, interferometric interrogator and multiplexer for fiber Bragg grating sensors

    Get PDF
    We report on the design and prototyping of a robust high-speed interferometric multiplexer and interrogator for fiber Bragg grating sensors. The scheme is based on the combination of active WDM channel switching and passive, instantaneous interferometry, allowing the resolution of virgin interferometric interrogators to be retained at MHz multiplexing rates. In this article the system design and operation are described, and a prototype scheme is characterized for three sensors and a multiplexing rate of 4 kHz, demonstrating a noise floor of 10 nε/√Hz and no cross-sensitivity. It is proposed that the system will be applicable to demanding monitoring applications requiring high speed and high resolution measurements across the sensor array

    Temperature characterisation of an optically-interrogated Rogowski coil

    Get PDF
    An investigation into the performance of an optically-interrogated Rogowski coil over temperatures up to 80 °C is presented. Preliminary thermal tests reveal that the sensor response is temperature-dependent and the measurement errors are increased at higher temperatures. Compensation of temperature effects is, therefore, necessary in order for the sensors to meet the requirements of protection and metering classes specified by relevant IEC standards over the considered operating temperature range. This can, however, only be achieved when the utilised sensor interrogator is adapted to ensure sufficient resolution and accuracy from a generally low-output transducer. As such, the design of a new multiplexing, interferometric interrogation platform is also proposed in this paper

    Interferometric time division FBG interrogator and multiplexer with static, dynamic, and absolute wavelength measurement capabilities

    Get PDF
    We report on the design and preliminary testing of an interferometric interrogator capable of large-scale time-division multiplexing of FBG sensors. The scheme employs a passive algorithm for phase demodulation, allowing changes in FBG sensor reflected wavelengths to be calculated instantaneously upon arrival, and incorporates a technique for identification of initial absolute sensor wavelengths in order to overcome the measurement ambiguity associated with interferometric schemes. The proposed system will allow for high-speed interrogation of large-scale FBG sensor arrays with interferometric resolution and the capability for dynamic, static, and absolute FBG wavelength measurement

    Solid-state interferometric interrogator and multiplexer for high-speed dynamic and absolute FBG wavelength measurement

    Get PDF
    We present a solid-state FBG array interrogator and multiplexer capable of determining absolute FBG wavelengths and of providing high-speed, high-resolution static and dynamic measurements. Using a described procedure, deployable on multiplexing passive-interferometric schemes, the system is able to determine initial sensor wavelengths and thereafter track wavelength changes with interferometric resolution. The scheme allows high-resolution interrogation of FBG sensor arrays to be applied to many industrial applications, where previously the lack of combined absolute and quasi-static wavelength measurement precluded the use of interferometric techniques. Using a preliminary laboratory embodiment, we demonstrate a wavelength determination accuracy of <0.3 nm and a measurement resolution of 10 fm/√Hz, and propose pathways to improved performance and miniaturisation

    Nanoscale resolution interrogation scheme for simultaneous static and dynamic fiber Bragg grating strain sensing

    Get PDF
    A combined interrogation and signal processing technique which facilitates high-speed simultaneous static and dynamic strain demodulation of multiplexed fiber Bragg grating sensors is described. The scheme integrates passive, interferometric wavelength-demodulation and fast optical switching between wavelength division multiplexer channels with signal extraction via a software lock-in amplifier and fast Fourier transform. Static and dynamic strain measurements with noise floors of 1 nanostrain and 10 nanostrain/sqrt(Hz), between 5 mHz and 2 kHz were obtained. An inverse analysis applied to a cantilever beam set up was used to characterise and verify strain measurements using finite element modeling. By providing distributed measurements of both ultahigh-resolution static and dynamic strain, the proposed scheme will facilitate advanced structural health monitoring

    Controlled fabrication of tunable delay using compound phase shifted resonators

    Get PDF
    Fine tuned, narrowband group delay (“slow light”) is obtained using a compound phase shifted grating and superposing resonances. Both simulation and experiments are reported

    High-speed interferometric FBG interrogator with dynamic and absolute wavelength measurement capability

    Get PDF
    A passive, interferometric wavelength demodulation technique has been extended to measure the absolute wavelengths of a multiplexed array of fiber Bragg grating sensors. The scheme retains its original strain resolution of 10 nε/√{Hz}. A proof-of-concept interrogation system was able to determine the absolute wavelength of Bragg peaks to within 20 pm (17 με). Static and dynamic Bragg grating strains were accurately demodulated in both absolute and relative wavelength measurement modes. This demonstration indicates that interferometric techniques are able to provide absolute, static and dynamic measurements of strain within a single platform

    All-optical differential current detection technique for unit protection applications

    Get PDF
    In this paper we demonstrate a novel, all-optical differential current protection scheme. By monitoring the optical power reflected from two matched hybrid fiber Bragg grating current sensors and using a simple optoelectronic threshold detector, an immediate response to an increase in differential current is achieved. A preliminary laboratory embodiment is constructed in order to characterize the performance of the scheme. The proposed technique does not require a complex sensor interrogation scheme, usually characterized by a limited sampling frequency, and thus will be capable of facilitating inexpensive and fast-acting differential protection over long distances

    A Simple Non-equilibrium Feedback Model for Galaxy-Scale Star Formation: Delayed Feedback and SFR Scatter

    Get PDF
    We explore a class of simple non-equilibrium star formation models within the framework of a feedback-regulated model of the ISM, applicable to kiloparsec-scale resolved star formation relations (e.g. Kennicutt-Schmidt). Combining a Toomre-Q-dependent local star formation efficiency per free-fall time with a model for delayed feedback, we are able to match the normalization and scatter of resolved star formation scaling relations. In particular, this simple model suggests that large (\simdex) variations in star formation rates (SFRs) on kiloparsec scales may be due to the fact that supernova feedback is not instantaneous following star formation. The scatter in SFRs at constant gas surface density in a galaxy then depends on the properties of feedback and when we observe its star-forming regions at various points throughout their collapse/star formation "cycles". This has the following important observational consequences: (1) the scatter and normalization of the Kennicutt-Schmidt relation are relatively insensitive to the local (small-scale) star formation efficiency, (2) but gas depletion times and velocity dispersions are; (3) the scatter in and normalization of the Kennicutt-Schmidt relation is a sensitive probe of the feedback timescale and strength; (4) even in a model where Q~gas\tilde Q_{\rm gas} deterministically dictates star formation locally, time evolution, variation in local conditions (e.g., gas fractions and dynamical times), and variations between galaxies can destroy much of the observable correlation between SFR and Q~gas\tilde Q_{\rm gas} in resolved galaxy surveys. Additionally, this model exhibits large scatter in SFRs at low gas surface densities, in agreement with observations of flat outer HI disk velocity dispersion profiles.Comment: 15 pages, 6 figures, accepted by MNRAS (04/25/2019
    corecore